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In [1] the author proposed the use of an effective nose resistance 
coefficient for calculating the effect of the real properties of a gas in 
a high entropy layer for hypersonic flow around thin blunt bodies. The 
essence of the method lies in the exclusion of the energy involved in 
physicochemical transformations from the balance of kinetic and po- 
tential energy. 

In what follows this method is extended to the case of a strong ex- 
plosion [2] in a real gas, important from the point of view of the ex- 
plosion analogy of flow around thin blunt bodies [3]. We represent the 
equations of motion for tMs case in the following integral form (7 is the 
adiabatic exponent of the unperturbed gas): 

1 peoRVva211+PoR~ r _  v u * ,  B~P.2o E , = I x E  ' 
"-2- ~ - ' - i -  t " ~ -  T "~ ~- - ~ - : ~  ' 

t 

p~RVvl~Is = v I Bv- t  (poI~ - -  p~)  dt , 
o 

' O t  ' 

M tt 

I1 = ~ din, I~ = ~ ~o rv-! dr, 
o 

M 

o 

R 

v - - t  I P r"-2dr for v = 2 ,  3, s , =  ~ p-7 
o 
1 4 : t  for v = | ,  

d m =  lprV-ldr, M ~ (l!v) p~/:/v, 

l =  1, 2~, 4n for v = t ,  2, 3. (1) 

Here and in what follows p, p, e, i, R, and v are the density, pres- 
sure, internal energy, enthalpy, gas shock wave and gas velocity; r and 
t are the distance to the centre and evolution time of the explosion, 
the indices 0% R, and 0 refer to quantities in the unperturbed gas, di- 
rectly behind the shock wave, and in the center; the quantity v cor- 
responds to the dimemionality of the space; P is the total energy of the 
explosion; E" = pE is the effective energy. 
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The coefficient ~ takes into account the difference of potential en- 
ergies between real and perfect gases, and for the equation of state 

pi T "Yo 
p - - q , - - 1  z (i, p) - -  To _ 1  (2] 

it may be represented in the following form: 
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The function z is shown in Fig. 1 for air (7 -- 1.4) for varionsp = i0 n 
aim. The solid lines are the data of [4] for temperatures T .< 20 000~ K, 
the dashed lines are the data of [5] for temperatures T .< 500 000 ~ K, 
and i a = 250 cal /g is the enthalpy for T = 1000" K. 

For an attenuated shock wave with R ~ 6a.o ~ 2000 m/sec the air 
will be dissociated only in the central zone with a practically fixed 
mass ms. Since p is only weakly dependent upon the pressure (as 
p(T0-1)/T0) the analysis of paper [1] may be applied in its entirety to 
this case. Here the mass m0 is analogous to the high entropy layer; the 
law of motion of the shock wave, as well as distribution of parameters 
outside the mass ms, will coincide at all times with the samequantities 
for an explosion in a perfect gas with energy E" = gE. 

Let us now consider a more general case. Usually (pR/p,o ~ 6-20 
for powerful shock waves in air, and as is well known from the analysis 
of the exact solutions [2, 6], the main mass of gas is ~tuated in a nar- 
row region of order (P,JPR) R in the neighborhood of the shock wave, 
outside which the pressure is close to a constant. Thus the integrals I k 
and the ratiovR/t~ are close to unity, and consequently are onlyweakly 
dependent on the equation of state of the gas. However, since with 
these assumptions Eqs. (1) completely determine the law of motion of 
the shock wave R(t) and the pressure p0(t), the effect of the real proper- 
ties of the gas on these basic quantities will manifest itself onlythrough 
the coefficients ix. 

The function p depends on time basically because of the depen- 
dence of the function z on the pressure, i. e . ,  it is a comparatively weak 
relationship (Fig. 1); thus we assume in first approximation that, as 
for the case of blunt bodies [1], the solution of system (1) is at all 
times close to that with constant/1, equal to its local value. 

Thus the required solution may be given the following simple form: 
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Here Sl and fx may be found from the exact calculations for a per- 
fect gas (for example, [7]) or from any approximate solutions (for ex- 
ample, [6,8]). A similar formula may be written down for p01poo also. 

As distinct from flow around blunt bodies where the form of the 
front portion is known in advance, the law of motion of a shock wave 
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in an explosion and the entropy distribution in the central part of the 
explosives zone are determined by a process of simuRaneous solution 
of the relationships (27-(4), or (17-(37. The enthalpy profile which is 
necessary for calculating/a can be determined by successive integration 
of the adiabatic equation dini = [(70 -1)/y0]clinP along constant values 
of m0. Since the enthalpy is oniy weakly dependent on the pressure in 
this case it is not necessary to know the pressure distribution in the ex- 
plosive zone exactly (for example, for a spherical explosion the form- 
ula P/PR = 0.4 + 0.6m/M gives a good approximation within a wide 
range of values of 7 and pR/p,o > 1.5). To solve the problem theinit ial  
profile i(m/M) satisfying the energy balance must be given fo r  some 
sufficiently small value of the mass M01. The effect of this profile is 
damped out as the ratio M0/M0~ increases. 

An example of this type of calculation for an explosion on the 
ground is given in Fig. 2 (solid line). We can see tt.at V has a minimum 
in the range of shock wave intensities corresponding to the maximum 
values of the function z in Fig. 1 in the main part of the shock wave. 
The asymptotic value ~ ~ 0.78 as PR"* P,, differs from unity, and this is 
is explained by the conservation of high temperatures in the central re- 
gion (for a nonthermally conducting gas). 

The coefficient ~ given by the dashed line in Fig. 2 was obtained 
by processing the results given in paper [9] for the exact numerical cal- 
culatious, and is fairly close to the approximate value. The quantity 
is determined by the region of values of m0, corresponding to intense 
shock waves ]1 ~ 1, and since the constant Xv is only weakly dependent 

on v, the coefficient/i  may be taken to be independent of the dimen- 
sionality of the space in the first approximation. The dash-dot line in 
Fig. 2 confirms this, since it gives data from paper [10] tot v = 2 and 
is close to the curves for which v = 3. 

We note that the form of representing the data in papers [9,10] ex- 
cludes the possibility of using them With an accuracy greater than the 
discrepancy of the curves in Fig. 2. 

The author is grateful to N. G. Gorshkov for carrying out the calcu- 
lations. 

REFERENCES 

1. V. V. Lunev, "Hypersonic flow around thin blunt bodies with 
physicochemical transformations of gas in the high entropy layer, " 
PMTF, no. 5, 1954. 

2. L. I. Sedov, Similarity Methods and Dimensionality in Mechan- 
ics [in Russian], 4- th Edition, Gostekhizdat, Moscow, 1967. 

3. G. G. Chernyi0 Gas Flow with a High Supersonic Velocity [in 
Russian] Fizmatgiz, Moscow, 1959. 

4. Tables of the Thermodynamic Functions of Air [in Russian] Izd- 
vo AN SSSR, Moscow, 1957, 1969, 1962. 

5. V. V. Selivanov and I. Ya. Shlyapintokh "The thermodynamic 
properties of air with thermal ionization and the shock wave ,"  Zh. fiz. 
khimii, vol. 32, no. 3, p. 670, 1958. 

6. V. P. Korobeinikov, N. S. Mel'nikov, and E. V. Ryazonov, 
The Theory of a Point Explosion [in Russian] Fizmatgiz, Moscow, 1961. 

7. D. E. Okhotsimskii, I. L. Kondrashova, Z. P. Vlasova, and 
R. K. Kazakova, =The calculations for a l~oint explosion with allowance 
for back pressure," Tr. matem, in-ta  AN SSSR0 vol. 50, 1957. 

8. G. G. Chernyi~ "The use of integral relations in problems of the 
propagation of strong shock waves, '~ PMM~ no. 1~ 1960. 

9. H. Brode~ "Blast wave from a Spherical charge," Phys. Fluids, 
no. 2, 1959. 

10. K. Rose, "A Theoretical analysis of hydrodynamic flow in the 
exploding wire phenomenon, ~ in: Exploding Wires [in Russian] Izd-vo 
Inostr. lit . ,  Moscow, 1963. 
15 March 1968 

561 


